Weighted average of individual slopes

Edward Liu 006232687

Does anyone know how to calculate slope?

• **Arithmetic mean**

• **Weighted arithmetic mean**

$$
\bar{x}=\frac{1}{n}\left(\sum_{i=1}^nx_i\right)=\frac{x_1+x_2+\cdots+x_n}{n}
$$

$$
\bar{x}=\frac{\sum\limits_{i=1}^n w_i x_i}{\sum\limits_{i=1}^n w_i},
$$

which expands to:

$$
\bar{x}=\frac{w_1x_1+w_2x_2+\cdots+w_nx_n}{w_1+w_2+\cdots+w_n}.
$$

Can someone give me an example? In what situations do we need to use weighted averages?

Least Squares Estimates (LSE)

• The least squares approach choose b_0 and b_1 that minimize the SS_{res} , i.e.,

$$
(b_0,b_1)=\arg\min_{\alpha_0,\alpha_1}\sum_{i=1}^n(y_i-\alpha_0-\alpha_1x_i)^2
$$

Take derivative w.r.t. α_0 and α_1 , setting both equal to zero:

$$
\left.\frac{\partial SS_{res}}{\partial \alpha_0}\right|_{b_0,b_1}=\sum_{i=1}^n\frac{\partial (y_i-\alpha_0-\alpha_1x_i)^2}{\partial \alpha_0}\right|_{b_0,b_1}=-2\sum_{i=1}^n(y_i-b_0-b_1x_i)=0
$$

$$
\frac{\partial SS_{res}}{\partial \alpha_1}\bigg|_{b_0,b_1}=\sum_{i=1}^n\frac{\partial (y_i-\alpha_0-\alpha_1x_i)^2}{\partial \alpha_1}\bigg|_{b_0,b_1}=-2\sum_{i=1}^nx_i(y_i-b_0-b_1x_i)=0
$$

The two equations are called the normal equations.

Least Squares Estimates: Solve for α_0 and α_1

• Solve for α_0 given b_1 :

 $b_0 = \overline{y} - b_1 \overline{x}$

• Solve for α_1 given $b_0 = \overline{y} - b_1 \overline{x}$:

$$
b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}} = r \frac{\sqrt{S_{yy}}}{\sqrt{S_{xx}}},
$$

where $S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$, $S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$, $S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$, and r is the sample correlation coefficient between x and y . Page 4

$f(X) = \beta_0 + \beta_1 X$ with unknown parameters β_0 and β_1 .

In fact, the weighted average of slope ij weighted by the squared separation $(xj - xi)2$ is

the least squares estimator b_1

$$
b_1=\frac{\sum_{i,j}(x_j-x_i)^2\mathrm{slope}_{ij}}{\sum_{i,j}(x_j-x_i)^2}
$$

 \cdot the weighted average of slopeij weighted by the squared separation $(xj - xi)^2$ % Define the points $x = [0, 4, 5];$ $y = [0, 1, 5];$ $z = b1 * x;$ % Calculate slopes

slope1 = $(y(2) - y(1)) / (x(2) - x(1))$; % Slope for $(0, 0)$ to $(4, 1)$ slope2 = $(y(3) - y(2)) / (x(3) - x(2))$; % Slope for $(4, 1)$ to $(5, 5)$ slope3 = $(y(3) - y(1)) / (x(3) - x(1))$; % Slope for $(0, 0)$ to $(5, 5)$

% Plot the points figure; plot(x, y, 'ro', 'MarkerSize', 10); % Red points

hold on;

```
% Plot the lines
plot(x, z, 'black', 'LineWidth', 2);
line([x(1), x(2)], [y(1), y(2)], 'Color', 'b', 'LineWidth', 2); % Line 
from (0, 0) to (4, 1)
line([x(2), x(3)], [y(2), y(3)], 'Color', 'g', 'LineWidth', 2); % Line
from (4, 1) to (5, 5)
line([x(1), x(3)], [y(1), y(3)], 'Color', 'r', 'LineWidth', 2); % Line 
from (0, 0) to (5, 5)
```
graphically

xlabel('X'); ylabel('Y'); title('Points and Lines with Slopes'); grid on; hold off; Page 6

```
• the least squares estimator b1% Define the slope
slope = 0.7857;
% Generate x-values (for example, from -10 to 10)
x = linspace(-10, 10, 100);
% Calculate corresponding y-values using the equation of the line
y = slope * x;% Plot the line
plot(x, y, 'b', 'LineWidth', 2);
hold on;
% Mark the point (0, 0)
plot(0, 0, 'ro', 'MarkerSize', 10);
% Set axis labels and title
xlabel('x');
ylabel('y');
title('Line Through (0,0) with Slope 0.7857');
% Set grid
grid on;
% Display legend
legend('Line: y = 0.7857x', '(0, 0)', 'Location', 'NorthWest')
% Hold off to prevent further plotting on the same figure
hold off;
```
 \bullet the weighted average of slopeij weighted by the squared separation $(xj - xi)^2$

• the least squares estimator $b1$

How about we put the two graphs together?

Page 8 **graphically**

- the weighted average of slopeij weighted by the squared separation $(xj - xi)^2$
- 1. Calculate the Slopes (slope_{ij}) and Squared Separations ($(x_j x_i)^2$):
	- For $(x_1, y_1) = (0, 0)$: • slope₁₂ = $\frac{1-0}{4-0}$ = $\frac{1}{4}$
	- slope₁₃ = $\frac{5-0}{5-0}$ = 1
	- For $(x_2, y_2) = (4, 1)$:
	- slope₂₃ = $\frac{5-1}{5-4}$ = 4

Squared Separations:

- $(x_2 x_1)^2 = (4 0)^2 = 16$ • $(x_3 - x_1)^2 = (5 - 0)^2 = 25$ • $(x_3 - x_2)^2 = (5 - 4)^2 = 1$
- 2. Calculate the Weighted Average of Slopes (b_1) :

$$
\blacktriangleright b_1 = \tfrac{\sum_{i,j} (x_j - x_i)^2 \times \text{slope}_{ij}}{\sum_{i,j} (x_j - x_i)^2}
$$

Plugging in the values:

$$
b_1 = \frac{(16 \times \frac{1}{4}) + (25 \times 1) + (1 \times 4)}{16 + 25 + 1} = \frac{4 + 25 + 4}{42} = \frac{33}{42} = \frac{11}{14}
$$

So, the least squares estimator b_1 for these data points is $\frac{11}{14}$ or approximately 0.7857.

• the least squares estimator $b1$

$$
\frac{2x}{x} = \frac{2x}{n} = \frac{x_1 + x_2 + x_3}{n} = \frac{0 + 4 + 5}{3} = 3
$$
\n
$$
\frac{2}{3} = \frac{2x_1}{n} = \frac{x_1 + x_2 + x_3}{n} = \frac{0 + 1 + 5}{3} = 2
$$
\n
$$
\frac{2}{3} = \frac{2x_1 + x_2 + x_3}{n} = \frac{0 + 1 + 5}{3} = 2
$$
\n
$$
\frac{2}{3} = \frac{1}{3} = \frac{0 + 1 + 5}{3} = 2
$$
\n
$$
\frac{2}{3} = \frac{1}{3} = \frac{0 + 1 + 5}{3} = 2
$$
\n
$$
\frac{2}{3} = \frac{1}{3} = \frac{0 + 1 + 5}{3} = 2
$$
\n
$$
\frac{2}{3} = \frac{0 + 1 + 1}{3} = \frac{1}{3} = \frac{1}{3}
$$
\n
$$
= \frac{6 - 1 + 6}{9 + 1 + 4} = \frac{1}{1} = \frac{1}{
$$

$$
b_1 = \frac{\sum_{i,j}(x_j-x_i)^2 \text{slope}_{ij}}{\sum_{i,j}(x_j-x_i)^2}
$$

$$
b_1=\frac{\sum_{i=1}^n(x_i-\overline{x})(y_i-\overline{y})}{\sum_{i=1}^n(x_i-\overline{x})^2}
$$

$$
b = \frac{\sum_{i,j} (x_{j} - x_{i})^{2} \text{ slope}_{ij}}{\sum_{i,j} (x_{j} - x_{i})^{2}}
$$

= $\frac{\sum_{i,j} (x_{j} - x_{i})^{2} \frac{y_{j} - y_{i}}{x_{j} - x_{i}}}{\sum_{i,j} (x_{j} - x_{i})^{2}}$
= $\frac{\sum_{i,j} (x_{j} - x_{i}) (y_{j} - y_{i})}{\sum_{i,j} (x_{j} - x_{i})^{2}}$

Mathematically(1) Page 10

$$
\iint_{\gamma_{i}}^{4\gamma_{i}} = b_{0} + b_{1}X_{i} + \epsilon_{i}
$$
\nwhere b_{0} , b_{1} are the estimator of ℓ_{0} , θ_{1} , ζ_{1} is the result.
\n
$$
\int_{\Omega} b = \frac{\sum_{i,j} (\gamma_{j} - x_{i}) \left[b_{1}(X_{j} - X_{i}) \right] \epsilon_{j} - \epsilon_{i}}{\sum_{i,j} (\gamma_{j} - x_{i})^{2}}
$$
\n
$$
= \frac{\sum_{i,j} (\gamma_{j} - x_{i})^{2} \cdot b_{1} + \sum_{i,j} (\gamma_{j} - x_{i}) (\epsilon_{j} - \epsilon_{i})}{\sum_{i,j} (\gamma_{j} - x_{i})^{2}}
$$
\n
$$
= b_{1} + \frac{\sum_{i} (\gamma_{j} \epsilon_{i} - x_{i} \epsilon_{i}) + \sum_{i} (\gamma_{j} - x_{i})}{\sum_{i} (\gamma_{i} - x_{i})}
$$
\nThe inner product of residual and prediction is O.
\nSo that, $\sum_{i} y_{i} \epsilon_{i} = \sum_{i} y_{i} \epsilon_{i} = \sum_{i} y_{i} \epsilon_{i} = 0$
\nTherefore, $b = b_{1}$.

$$
\frac{1}{\pi} \frac{f_{ij}(x_{ij} - x_{i})}{f_{ij}(x_{ij} - x_{i})} = \frac{1}{\pi} \left[\left(x_{ij} - x_{i} \right)^{2} - \left(x_{ij} - x_{i} \right)^{2} \right] \right] \right] \right]
$$
\n
$$
= \frac{1}{\pi} \left[f_{ij} - \bar{x} \right] + \left[\left(x_{ij} - \bar{x} \right)^{2} - \left(x_{ij} - \bar{x} \right)^{2} \left[\left(x_{ij} - \bar{x} \right)^{2} - \left(x_{ij} - \bar{x} \right)^{2} \right] \right]
$$
\n
$$
= \frac{1}{\pi} \left[f_{ij} - \bar{x} \right] + \left[\left(x_{ij} - \bar{x} \right)^{2} + \left(x_{ij} - \bar{x} \right)^{2} - \left(x_{ij} - \bar{x} \right)^{2} \right] \right]
$$
\n
$$
= \frac{1}{\pi} \left[f_{ij} - \bar{x} \right] + \left[\left(x_{ij} - \bar{x} \right)^{2} \left(\left(x_{ij} - \bar{x} \right)^{2} \right) + \left(x_{ij} - \bar{x} \right)^{2} \right] \right]
$$
\n
$$
= \frac{1}{\pi} \left[f_{ij} - \bar{x} \right] + \left(x_{ij} - \bar{x} \right) \left(x_{ij} - \bar{x} \right)
$$
\n

Mathematically(2) Page 11

 \subset